Journal Articles

Supekar, S. D., & Skerlos, S. J. (2017) Sourcing of steam and electricity for carbon capture retrofits. Environmental Science & Technology, 51(21), 12908–12917. doi: 10.1021/acs.est.7b01973.

Supekar, S. D., & Skerlos, S. J. (2017). Analysis of costs and time frame for reducing CO2 emissions by 70% in the U.S. auto and energy sectors by 2050. Environmental Science & Technology, 51(19), 10932–10942. doi: 10.1021/acs.est.7b01295

Liang, S., Stylianou, K. S., Jolliet, O., Supekar, S. D., Qu, S., Skerlos, S. J., & Xu, M. (2017). Consumption-based human health impacts of primary PM 2.5: The hidden burden of international trade. Journal of Cleaner Production, 167, 133–139. doi: 10.1016/j.jclepro.2017.08.139

Supekar, S. D., & Skerlos, S. J. (2016) Response to comment on "Reassessing the energy penalty from carbon capture in coal-fired power plants." Environmental Science & Technology. 50(11), 6114–6115. doi: 10.1021/acs.est.6b02022

Supekar, S. D., & Skerlos, S. J. (2015) Reassessing the energy penalty from carbon capture in coal-fired power plants. Environmental Science & Technology. 49(20), 12576–12584. doi: 10.1021/acs.est.5b03052

Supekar, S. D., & Skerlos, S. J. (2014). Market-driven emissions of recovered carbon dioxide gas. Environmental Science & Technology, 48(24). 14615–14623. doi: 10.1021/es503485z

Supekar, S. D., & Skerlos, S. J. (2014). Supercritical carbon dioxide in microelectronics manufacturing: marginal cradle-to-grave emissions. Procedia CIRP15, 461–466. doi: 10.1016/j.procir.2014.06.061

Stephenson, D. A., Skerlos, S. J., King, A. S., & Supekar, S. D. (2014). Rough turning Inconel 750 with supercritical CO₂-based minimum quantity lubrication. Journal of Materials Processing Technology, 214(3), 673–680. doi: 10.1016/j.jmatprotec.2013.10.003

Supekar, S. D., Gozen, B. A., Bediz, B., Ozdoganlar, O. B., & Skerlos, S. J. (2013). Feasibility of supercritical carbon dioxide based metalworking fluids in micromilling. Journal of Manufacturing Science and Engineering, 135(2), 024501. doi: 10.1115/1.4023375

Supekar, S. D., Clarens, A. F., Stephenson, D. A., & Skerlos, S. J. (2012). Performance of supercritical carbon dioxide sprays as coolants and lubricants in representative metalworking operations. Journal of Materials Processing Technology, 212(12), 2652–2658. doi: 10.1016/j.jmatprotec.2012.07.020

Manuscripts in Preparation

Supekar, S. D., Graziano, D. J., & Cresko, J.  Mapping innovation and trends in smart manufacturing using patents.

Supekar, S. D., Graziano, D. J., Skerlos, S. J., & Cresko, J.  Productivity-driven comparison of life cycle environmental impacts of aqueous and gas-based metalworking fluids.

Supekar, S. D., Lim, T.-H., & Skerlos, S. J. On the emissions, costs, and timing of integrating direct air capture plants into the U.S. electric grid.

Raichur, V., Supekar, S. D., & Skerlos, S. J. Parametric analysis of utility-scale energy storage for renewable energy expansion.


Supekar, S. D. (2015). Environmental and Economic Assessment of Carbon Dioxide Recovery and Mitigation in the Industrial and Energy Sectors. Doctoral Thesis. University of Michigan, Ann Arbor. Available online

Refereed Conference Papers

Morrow III, W. R., Carpenter, A., Cresko, J., Das, S., Graziano, D. J., Hanes, R., Supekar, S. D., Nimbalkar, S., Riddle, M. E., Shehabi, A. (2017). U.S. Industrial Sector Energy Productivity Improvement Pathways. Proceedings of the 2017 ACEEE Summer Study on Energy Efficiency in Industry (pp. 101–113). Washington, DC: American Council for an Energy-Efficient Economy. Available online

Supekar, S. D., & Skerlos, S. J. (2013). Market Driven Emissions Associated with Supplying Recovered Carbon Dioxide to Sustainable Manufacturing Applications. In G. Seliger (Ed.), Proceedings of the 11th Global Conference on Sustainable Manufacturing - Innovative Solutions (pp. 330–336). Berlin: Universitätsverlag der TU Berlin. Available online

Supekar, S. D., Caruso, K. A., Daskin, M. S., & Skerlos, S. J. (2013). Least-Cost Technology Investments in the Passenger Vehicle and Electric Sectors to Meet Greenhouse Gas Emissions Targets to 2050. In A. Y. C. Nee, B. Song, & S.-K. Ong (Eds.), Re-engineering Manufacturing for Sustainability. Singapore: Springer Singapore. doi :10.1007/978-981-4451-48-2

Invited Talks

Achieving CO2 emission targets at least cost: The role of legacy technologies, preventive action, and negative emissions. Closing the Carbon Cycle Conference, September 28, 2016, Tempe, AZ.

Technology trajectories to achieve emission reduction targets in the U.S. energy sector. ASME International Mechanical Engineering Congress & Exposition, November 18, 2015, Houston, TX.

Achieving greenhouse gas emission targets at least cost: The fossil fueled inertia of legacy power plants. University of California, Davis, October 8, 2015, Davis, CA.

Marginal environmental impacts from recovery of carbon dioxide gas. NASA Ames Research Center, June 28, 2014, Mountain View, CA.

Supercritical carbon dioxide based metalworking fluids. Michigan DEQ Retired Engineer Technical Assistance Program, November 21, 2011, Lansing, MI.

Supercritical carbon dioxide based metalworking fluids. Michigan Green Chemistry and Engineering Conference, October 27, 2011, Ann Arbor, MI.


Beyond EPA's Clean Power decision: Climate action window could close as early as 2023, EurekAlert! (AAAS), 2017

University of Michigan study shows cost-effectiveness of reducing carbon emissions, Crain’s Detroit Business, 2017

Michigan scientists see urgency for negative emissions, Climate Central, 2016

Carbon capture too costly, so leave coal in the ground, say researchers, Michigan Radio (NPR), 2015

The latest bad news on carbon capture from coal power plants: higher costs, The Conversation, 2015