Sarang Supekar
The highest forms of understanding we can achieve are laughter and human compassion.
— Richard P. Feynman

Shepherds and Their Flock

Indore–Bhopal Expressway, India | NIKON D5100, NIKKOR 300mm, f/5.6, 1/1250s | Post-processed in Adobe Photoshop CS6




I am a mechanical engineer focused on creating technology and policy solutions for humanity's transition towards sustainable manufacturing and energy systems.  I received my Ph.D. from the University of Michigan, Master's degree from the University of Florida, and Bachelor's degree from the University of Pune, all in mechanical engineering.  My current work as a Systems Scientist at Argonne National Laboratory is on industrial gas-based "dry" technologies to substitute water intensive processes in the industry and on the use of smart technologies and analytics to achieve breakthrough leaps in material and energy productivity in high-value manufacturing industries.  In my free time, I enjoy distance running, pottery, woodworking, and classical music.




My research is on inventing transformative manufacturing technologies with a vision for dry (water-less) and resource-efficient factories, and developing new computational models for design, analysis, and evaluation of manufacturing and energy systems of the future.  Specific areas of interest include (1) supercritical carbon dioxide-based technologies in manufacturing, thermal management, and waste treatment applications; (2) predictive modeling and process simulation for data-driven decision-making in manufacturing systems; (3) thermodynamic, life cycle, and systems analysis of industrial and biogeochemical carbon capture and sequestration pathways; (4) least-cost climate change mitigation technology forecasting and policy analysis in the energy and transportation sectors, and (5) regional water impacts of global energy transitions to near-zero greenhouse gas emissions.

Select research projects from my doctoral and postdoctoral work are briefly summarized below.


Supercritical Carbon Dioxide Based Metalworking Fluids

Metalworking fluids (MWFs) are essential coolants and lubricants that are ubiquitous in the metals manufacturing industry.  This research studied the applicability of supercritical CO2 MWFs relative to other water and gas-based MWFs used in a wide variety of manufacturing processes and engineering materials in industrial practice.  In its supercritical state, CO2 possesses excellent solubility (and solubility control) for low and medium-carbon compounds such as vegetable oils.  Supercritical CO2 MWF is essentially a solution of CO2 compressed to about 14 MPa and 42 °C with small quantities of dissolved oil that is rapidly expanded through a nozzle.  The resulting spray particles contain chilled oil particles and dry ice, which provide a high degree of lubricity and cooling to the interface between the cutting tool and metal being machined.

Specific contributions include analysis of tool wear, machining forces, and thermal data collected from a large set of machining experiments at industrial conditions, and data synthesis to determine operating conditions and underlying mechanisms whereby supercritical CO2 MWFs provide better productivity than water and oil-based MWFs. The research also investigated the effectiveness of supercritical CO2 MWFs as an enabler for environmentally benign mechanical micro-machining processes to replace chemical fabrication processes without performance trade-offs.  Cutting forces and surface characteristics of Cu-101 and AISI-304 were measured and analyzed in a partial factorial experiment set.  Results showed improved micro-machinability, warranting further exploration of underlying mechanisms.

Read more about this research in these publications.

D. A. Stephenson, S. J. Skerlos, A. S. King, S. D. Supekar, J. Mater. Process. Technol. 214, 673–680 (2014).

S. D. Supekar, B. A. Gozen, B. Bediz, O. B. Ozdoganlar, S. J. Skerlos, J. Manuf. Sci. Eng. 135, 24501 (2013).

S. D. Supekar, A. F. Clarens, D. A. Stephenson, S. J. Skerlos, J. Mater. Process. Technol. 212, 2652–2658 (2012).



Industrial CO2 Recovery

CO2 as an industrial resource has a market of about 11 million metric tonnes annually in the U.S. with applications ranging from metals fabrication, food and beverage processing, and chemicals and pharmaceuticals manufacturing.  In this research, we studied the recovered CO2 supply chain, and estimated the environmental emissions and resource use associated with recovering CO2 from industrial sources such as fertilizer plants, ethanol distilleries, and refinery hydrogen plants.  This research developed a market-based allocation method in a consequential life cycle assessment framework, which can be applied to recovered CO2 as well as other industrial co-products, proposed a revised set of greenhouse gas accounting operational boundaries to incorporate reuse and sequestration as fates for CO2, and created emissions and resource use inventories for CO2 recovered from all major industrial sources based on a comprehensive understanding of the thermodynamics, process engineering, and environmental aspects of CO2 recovery.  

Our research showed that depending on the source and purity of CO2, 1 metric tonne of recovered CO2 leads to additional greenhouse gas emissions of 147 − 210 kg CO2 eq , while consuming 160 − 248 kWh of electricity, 254 − 480 MJ of heat, and 1836 − 4027 kg of water.  Applying these emissions and resource use numbers to scCO2 MWFs and scCO2-based wafer rinsing in semiconductor manufacturing, we find that the use of CO2 can actually reduce the carbon, water, and energy footprints of these manufacturing processes.  These results encourage further exploration of industrial technologies based on the use of CO2 and other industrial gases as working fluids can help eliminate the use of water in "dry" and energy-efficient factories.

Read more about this research in these publications.

S. D. Supekar, S. J. Skerlos, Environ. Sci. Technol. 48, 14615–14623 (2014).

S. D. Supekar, S. J. Skerlos, Procedia CIRP. 15, 461–466 (2014).



Carbon Capture from Power Plants

This research focused on understanding the mass and energy feedbacks inherent to carbon capture systems, and their effects on the thermodynamic, environmental, and economic performance of power plants retrofitted with carbon capture.  In the context of power plants equipped with carbon capture, this research has established an analytical relationship between the pre-capture and post-capture efficiency of a power plant and quantified the effects of potentially more stringent quality/purity requirements for CO2 sequestration on the thermal efficiency and costs of carbon capture using process and life cycle models similar to those used for CO2 capture from industrial sources.  The analysis showed that the thermal efficiency penalty (drop in overall plant efficiency after adding a carbon capture unit) for older and relatively inefficient coal power plants can be vastly higher than the efficiency penalty for newer and more efficient coal power plants by as much as 9 %-points (typical efficiency of coal power plants ranges from 32 – 40%).  This result holds significant implications for carbon capture and sequestration (CCS) in subcritical coal power plants which comprise the majority of the world's installed coal power fleet.

This research also formulated a set of analytical equations for the thermal efficiency, CO2 emissions, and economics sixteen major carbon capture retrofit configurations for coal and natural gas CCS plants involving steam cycle integration as well as auxiliary boiler or gas turbine-based combined heat and power plants for supplying capture energy (the analytical equations incorporate the critical mass and energy feedbacks involved).  These expressions can rapidly and accurately evaluate profit-maximizing CCS configurations for thousands of individual plants without the need for costly process simulation models.  The equations have been implemented in the latest release of the Argonne GREET model.

Read more about this research in these publications.

S. D. Supekar, S. J. Skerlos, Environ. Sci. Technol., 51, 12908–12917 (2017).

S. D. Supekar, S. J. Skerlos, Environ. Sci. Technol. 49, 12576–12584 (2015).



Least-Cost Greenhouse Gas Mitigation in the U.S. Electric and Auto Sectors (The LETSACT Model)

This research created the Least-cost Energy and Transportation Sectoral Analysis for Climate Targets (LETSACT) technology planning and policy evaluation model for assessing current strategies and developing new strategies for climate change mitigation and adaptation.  The model offers several functionalities of economic equilibrium models at a lower computational cost.  This research has identified cost-minimizing technology pathways to cut about 45 billion tonnes of CO2 from these sectors by 2050.  Further, the work has established that even with optimistic technological and cost advancements, the cost of meeting CO2 reduction targets increases sharply with every year of delay beyond 2020 in pursuing these targets.  This increasing cost is in addition to the social and environmental damage costs of climate change.  This research is the first to quantify the ramifications of the inertia of vehicles and power plant turnover rates in the U.S. on the private costs of CO2 abatement, and it underscores the urgency of introducing adequate policy measures to keep emissions on track with IPCC targets. 

My ongoing research in this area combines the LETSACT model with carbon capture technology models to understand the costs and regional land and water use implications of negative emission technologies such as ambient CO2 capture and bioenergy with CCS in society’s transition to zero- and negative-carbon energy systems.  Current focus is on direct air capture (DAC) technology, which sucks CO2 from the atmosphere for long-term storage or sequestration.  We are particularly interested finding if, when, and to what extent can large-scale deployment of DAC plants help the U.S. stay within its carbon budget, and how such large-scale DAC deployment would impact the electricity demand and composition (coal, natural gas, renewables etc.) of the electric fleet.

Find out more about this research in these publications.

S. D. Supekar, S. J. Skerlos, Environ. Sci. Technol. 51, 10932–10942 (2017).

S. D. Supekar, K. A. Caruso, M. S. Daskin, S. J. Skerlos, Re-engineering Manufacturing for Sustainability, A. Y. C. Nee, B. Song, S.-K. Ong, Eds. (Springer, Singapore, 2013).





Journal Articles

Supekar, S. D., & Skerlos, S. J. (2017) Sourcing of steam and electricity for carbon capture retrofits. Environmental Science & Technology, 51(21), 12908–12917. doi: 10.1021/acs.est.7b01973.

Supekar, S. D., & Skerlos, S. J. (2017). Analysis of costs and time frame for reducing CO2 emissions by 70% in the U.S. auto and energy sectors by 2050. Environmental Science & Technology, 51(19), 10932–10942. doi: 10.1021/acs.est.7b01295

Liang, S., Stylianou, K. S., Jolliet, O., Supekar, S. D., Qu, S., Skerlos, S. J., & Xu, M. (2017). Consumption-based human health impacts of primary PM 2.5: The hidden burden of international trade. Journal of Cleaner Production, 167, 133–139. doi: 10.1016/j.jclepro.2017.08.139

Supekar, S. D., & Skerlos, S. J. (2016) Response to comment on "Reassessing the energy penalty from carbon capture in coal-fired power plants." Environmental Science & Technology. 50(11), 6114–6115. doi: 10.1021/acs.est.6b02022

Supekar, S. D., & Skerlos, S. J. (2015) Reassessing the energy penalty from carbon capture in coal-fired power plants. Environmental Science & Technology. 49(20), 12576–12584. doi: 10.1021/acs.est.5b03052

Supekar, S. D., & Skerlos, S. J. (2014). Market-driven emissions of recovered carbon dioxide gas. Environmental Science & Technology, 48(24). 14615–14623. doi: 10.1021/es503485z

Supekar, S. D., & Skerlos, S. J. (2014). Supercritical carbon dioxide in microelectronics manufacturing: marginal cradle-to-grave emissions. Procedia CIRP15, 461–466. doi: 10.1016/j.procir.2014.06.061

Stephenson, D. A., Skerlos, S. J., King, A. S., & Supekar, S. D. (2014). Rough turning Inconel 750 with supercritical CO₂-based minimum quantity lubrication. Journal of Materials Processing Technology, 214(3), 673–680. doi: 10.1016/j.jmatprotec.2013.10.003

Supekar, S. D., Gozen, B. A., Bediz, B., Ozdoganlar, O. B., & Skerlos, S. J. (2013). Feasibility of supercritical carbon dioxide based metalworking fluids in micromilling. Journal of Manufacturing Science and Engineering, 135(2), 024501. doi: 10.1115/1.4023375

Supekar, S. D., Clarens, A. F., Stephenson, D. A., & Skerlos, S. J. (2012). Performance of supercritical carbon dioxide sprays as coolants and lubricants in representative metalworking operations. Journal of Materials Processing Technology, 212(12), 2652–2658. doi: 10.1016/j.jmatprotec.2012.07.020

Manuscripts in Preparation

Supekar, S. D., Graziano, D. J., & Cresko, J.  Mapping innovation and trends in smart manufacturing using patents.

Supekar, S. D., Graziano, D. J., Skerlos, S. J., & Cresko, J.  Productivity-driven comparison of life cycle environmental impacts of aqueous and gas-based metalworking fluids.

Supekar, S. D., Lim, T.-H., & Skerlos, S. J. On the emissions, costs, and timing of integrating direct air capture plants into the U.S. electric grid.

Raichur, V., Supekar, S. D., & Skerlos, S. J. Parametric analysis of utility-scale energy storage for renewable energy expansion.


Supekar, S. D. (2015). Environmental and Economic Assessment of Carbon Dioxide Recovery and Mitigation in the Industrial and Energy Sectors. Doctoral Thesis. University of Michigan, Ann Arbor. Available online

Refereed Conference Papers

Morrow III, W. R., Carpenter, A., Cresko, J., Das, S., Graziano, D. J., Hanes, R., Supekar, S. D., Nimbalkar, S., Riddle, M. E., Shehabi, A. (2017). U.S. Industrial Sector Energy Productivity Improvement Pathways. Proceedings of the 2017 ACEEE Summer Study on Energy Efficiency in Industry (pp. 101–113). Washington, DC: American Council for an Energy-Efficient Economy. Available online

Supekar, S. D., & Skerlos, S. J. (2013). Market Driven Emissions Associated with Supplying Recovered Carbon Dioxide to Sustainable Manufacturing Applications. In G. Seliger (Ed.), Proceedings of the 11th Global Conference on Sustainable Manufacturing - Innovative Solutions (pp. 330–336). Berlin: Universitätsverlag der TU Berlin. Available online

Supekar, S. D., Caruso, K. A., Daskin, M. S., & Skerlos, S. J. (2013). Least-Cost Technology Investments in the Passenger Vehicle and Electric Sectors to Meet Greenhouse Gas Emissions Targets to 2050. In A. Y. C. Nee, B. Song, & S.-K. Ong (Eds.), Re-engineering Manufacturing for Sustainability. Singapore: Springer Singapore. doi :10.1007/978-981-4451-48-2

Invited Talks

Achieving CO2 emission targets at least cost: The role of legacy technologies, preventive action, and negative emissions. Closing the Carbon Cycle Conference, September 28, 2016, Tempe, AZ.

Technology trajectories to achieve emission reduction targets in the U.S. energy sector. ASME International Mechanical Engineering Congress & Exposition, November 18, 2015, Houston, TX.

Achieving greenhouse gas emission targets at least cost: The fossil fueled inertia of legacy power plants. University of California, Davis, October 8, 2015, Davis, CA.

Marginal environmental impacts from recovery of carbon dioxide gas. NASA Ames Research Center, June 28, 2014, Mountain View, CA.

Supercritical carbon dioxide based metalworking fluids. Michigan DEQ Retired Engineer Technical Assistance Program, November 21, 2011, Lansing, MI.

Supercritical carbon dioxide based metalworking fluids. Michigan Green Chemistry and Engineering Conference, October 27, 2011, Ann Arbor, MI.


Beyond EPA's Clean Power decision: Climate action window could close as early as 2023, EurekAlert! (AAAS), 2017

University of Michigan study shows cost-effectiveness of reducing carbon emissions, Crain’s Detroit Business, 2017

Michigan scientists see urgency for negative emissions, Climate Central, 2016

Carbon capture too costly, so leave coal in the ground, say researchers, Michigan Radio (NPR), 2015

The latest bad news on carbon capture from coal power plants: higher costs, The Conversation, 2015